rapid injection molding from F&Q TECH has established a reputation for quality. It has been continuously improved in line with our long tradition of pursuing excellence through quality enhancement. And with our global technology and innovation network, this product is created not only to fulfill the ambitions of customers but also to add value to their business.
F&Q TECH products have received a good market response and customer satisfaction since launched and are winning increasing popularity among old clients because the products have brought them many customers, increased their sales and successfully helped them develop and expand the market. The promising market and great profit potential of these products also attract lots of new clients.
We have gained more fame for our shipping service in addition to the products like rapid injection molding among customers. When established, we chose our long-term cooperative logistics company with extreme care to ensure efficient and quick delivery. Up till now, at F&Q TECH, we have established a reliable and fully perfect distribution system across the world with our partners.
Step-by-Step Guide to Placing an Order with Your Own Mold
Thank you for choosing F&Q-Tech for your injection molding needs. If you have your own mold, please follow the steps below to place an order with us. If you have any questions at any stage, feel free to contact our support team at lyy@fsqj-tech.com.
Before placing an order, please ensure that your mold meets the following specifications:
• Material Compatibility: Confirm that the mold is suitable for the type of plastic material you intend to use.
• Mold Dimensions: Verify that the mold dimensions match your product requirements.
• Mold Condition: Ensure that the mold is in good condition and ready for production.
If you need assistance with mold verification, please contact our technical team at lyy@fsqj-tech.com.
Once you have verified your mold specifications, please send your mold to our facility. You can choose to:
• Ship the Mold: Use a reliable courier service to ship the mold to our address:
[Please contact our team (lyy@fsqj-tech.com) for an address]
Please include your contact information and order details inside the package.
• Deliver the Mold In-Person: If you prefer to deliver the mold in person, please schedule a drop-off time with our logistics team at [lyy@fsqj-tech.com].
Please ensure that your mold is securely packaged to prevent any damage during transit.
Step 3: Confirm Order Details
After we receive your mold, our team will inspect it and confirm the order details with you. Please provide the following information:
• Product Quantity: Specify the number of units you wish to produce.
• Material Type: Indicate the type of plastic material you want to use (e.g., ABS, PC, PP).
• Color Requirements: Specify any color preferences or Pantone codes.
• Surface Finish: Indicate any specific surface finish requirements (e.g., glossy, matte).
• Delivery Date: Provide your desired delivery date.
You can submit this information via email to [lyy@fsqj-tech.com] .
Based on the information you provide, we will generate a detailed quotation for your order. The quotation will include:
• Mold Setup Fees: Any fees associated with setting up your mold.
• Production Costs: Costs based on the number of units and material type.
• Shipping Costs: Estimated shipping fees to your desired location.
Once the quotation is ready, we will send it to you for review. Please review the details and confirm your approval by replying to the email
After you approve the quotation, we will begin the production process. Our team will:
• Set Up Your Mold: Prepare the mold for production.
• Start Production: Begin injection molding your products.
• Conduct Quality Checks: Perform thorough quality checks to ensure your products meet the required standards.
If you have any specific quality requirements, please inform us during the order confirmation stage.
Once production is complete and quality checks are passed, we will arrange for the delivery of your products. You can choose from the following delivery options:
• Ship to Your Address: We will ship the products to your specified address.
• Pick Up at Our Facility: You can arrange to pick up the products at our facility.
After you receive your order, we would appreciate your feedback. Please let us know if you have any comments or suggestions by contacting us at email.
For any questions or assistance throughout the ordering process, please contact us:
Email: [lyy@fsqj-tech.com]
WhatsApp: [+86 136 1605 5490]
• Mold Storage: If you plan to place future orders using the same mold, we offer mold storage services. Please inquire about this option during the order process.
• Rush Orders: If you need a rush order, please inform us as soon as possible so we can accommodate your request.
This guide should help your customers understand the process of placing an order with their own molds and ensure a smooth and efficient transaction.
Step-by-Step Guide to Ordering with Custom Mold Requirements
Thank you for choosing F&Q-Tech for your injection molding needs. If you do not have an existing mold but have product drawings or samples, please follow the steps below to initiate the process of creating a custom mold and placing an order. If you have any questions at any stage, feel free to contact our support team at [ lyy@fsqj-tech.com].
To begin the process, please provide us with the following details:
· Product Drawings: CAD files or detailed technical drawings of the product you want to produce.
· Preferred formats: .dwg, .dxf, .step, .iges, or .pdf.
· Samples: If you have a physical sample, please send it to us for analysis.
· Shipping Address: [Your Company Name, Your Company Address, City, State, ZIP Code, Country].
· Material Requirements: Specify the type of plastic material you want to use (e.g., ABS, PC, PP).
· Quantity: Indicate the number of units you wish to produce.
· Color and Finish: Specify any color preferences or Pantone codes, and any specific surface finish requirements (e.g., glossy, matte).
You can submit this information via email to [lyy@fsqj-tech.com].
Once we receive your product details, our engineering team will review the information and assess the feasibility of the mold design. We will then provide you with a detailed quotation that includes:
· Mold Design and Manufacturing Costs: The cost associated with designing and manufacturing the custom mold.
· Production Costs: Costs based on the number of units, material type, and other specifications.
· Shipping Costs: Estimated shipping fees to your desired location.
The quotation will be sent to you within [1-3] business days. Please review it carefully and confirm your approval by replying to the email.
After you approve the quotation, our design team will create a 3D model of the mold. We will send you the design for your review and approval. Please check the following:
· Design Accuracy: Ensure that the mold design matches your product requirements.
· Dimensions and Tolerances: Verify that all dimensions and tolerances are as specified.
· Any Modifications: Let us know if any modifications are needed.
Please review the design within [1-3] days and provide feedback or approval. Delays in approval may affect the production timeline.
Once the mold design is approved, we will begin the manufacturing process. Our skilled technicians will:
· Machine the Mold: Use advanced machinery to fabricate the mold.
· Conduct Quality Checks: Perform thorough quality checks to ensure the mold meets the required standards.
· Test the Mold: Conduct test runs to ensure the mold functions correctly and produces parts to specification.
The mold manufacturing process typically takes [5] weeks. We will keep you updated on the progress.
With the mold ready, we will proceed to production. Our team will:
· Set Up the Mold: Install the mold in our injection molding machines.
· Start Production: Begin the injection molding process to produce your parts.
· Conduct Quality Assurance: Perform quality checks on the produced parts to ensure they meet your specifications.
If you have any specific quality requirements, please inform us during the order confirmation stage.
Once production is complete and quality checks are passed, we will arrange for the delivery of your products. You can choose from the following delivery options:
· Ship to Your Address: We will ship the products to your specified address.
· Pick Up at Our Facility: You can arrange to pick up the products at our facility.
After you receive your order, we would appreciate your feedback. Please let us know if you have any comments or suggestions by contacting us at [ lyy@fsqj-tech.com].
For any questions or assistance throughout the ordering process, please contact us:
· Email: [lyy@fsqj-tech.com]
· Tel / WhatsApp:[+86 136 1605 5490]
· Mold Storage: If you plan to place future orders using the same mold, we offer mold storage services. Please inquire about this option during the order process.
· Rush Orders: If you need a rush order, please inform us as soon as possible so we can accommodate your request.
When the factory starts injection molding production, it will purchase the corresponding raw materials according to the product requirements. Commonly used raw materials are ABS\PC\PP, etc. After the raw materials are ready, we start our first step: plasticization. The main purpose of the plasticization process is to heat and melt the raw materials (plastic particles) into a flowable liquid form.
Feeding: Feed the plastic particles into the barrel of the injection molding machine through the feeding port.
Heating: A heater inside the barrel heats the plastic pellets above the melting point, usually between 150°C and 350°C, depending on the type of plastic used.
Mixing and shearing: The screw rotates in the barrel, mixing and shearing the molten plastic to ensure that the material can be uniformly and consistently transferred to the next step.
Temperature control: ensures that the plastic is fully melted but not excessively degraded.
Screw speed: affects plasticization and mixing effects.
The injection stage is the process of injecting the molten liquid into the mold.
Mold Closure: The two halves of the mold are tightly closed to form a cavity.
Injection: The screw moves forward, injecting the molten plastic into the mold cavity through the nozzle.
Injection speed: affects filling time and filling quality.
Holding time: affects the dimensional stability and internal stress of the product.
The cooling phase is the process by which the plastic cools and solidifies within the mold.
Cooling time: Determine the appropriate cooling time based on product thickness and material properties.
Cooling medium: Use water or other cooling medium to exchange heat through the cooling channels in the mold.
Cooling rate: affects the crystallinity and internal stress of the product.
Mold temperature: affects the surface quality and dimensional accuracy of the product.
The demoulding stage is the process of removing the solidified plastic product from the mold.
Mold opening: The two halves of the mold separate.
Ejection: The ejection mechanism pushes the product out of the mold.
Ejection force: Ensure that the product is smoothly released from the mold without excessive deformation.
Ejection position: avoids scratches or damage to the product surface.
The four stages of the injection molding process - plasticization, injection, cooling and demolding - are each critical and affect the quality and performance of the final product. By deeply understanding and optimizing these stages, manufacturers can improve production efficiency, reduce scrap rates, and produce high-quality plastic products.
Hopefully this article will help you better understand the four key stages of the injection molding process. If you have any questions or need further advice, please feel free to contact us.
In the development of plastic products, choosing between 3D printing and injection molding requires comprehensive consideration of factors such as cost, precision, batch size, and design complexity. The following is an analysis of the two processes from the two core dimensions of cost optimization and high-precision requirements, combined with the characteristics of the two processes, and provides a basis for decision-making.
1) Production batches determine the core cost structure
3D printing: suitable for small batches (usually <1000 pieces) or single-piece production. It does not require mold costs, has low material loss (only the support structure may waste a small amount of material), and is flexible in iteration. For example, when using FDM technology to print a prototype, the cost per piece may be only 1/10 of that of injection molding.
Injection molding: more cost-effective in large-scale (>1000 pieces) production. Although the mold development cost is high (thousands to tens of thousands of yuan), the cost per piece decreases significantly as the batch increases. For example, in one case, the injection mold cost $10,000, but the cost per piece was only $0.1 when producing 100,000 pieces.
2)Design and iteration cost comparison
3D printing: CAD models can be directly printed after modification, without additional costs, suitable for the prototype stage where the design is frequently adjusted. For example, a company shortened the R&D cycle from 4 weeks to 48 hours by using 3D printing molds.
Injection molding: Mold modification costs are high (especially metal molds), suitable for mass production after the design is finalized. If the mold structure needs to be adjusted, it may be necessary to re-open the mold, which will increase the cost by tens of thousands of yuan.
3)Material And Post-Processing Costs
3D printing: limited material types (such as PLA, nylon, resin, etc.), some high-performance materials (such as PEEK) are expensive; post-processing usually only requires grinding or sandblasting.
Injection molding: wide selection of materials (such as ABS, PP, PC, etc.), lower prices; but post-processing such as mold polishing and electroplating may increase costs.
Decision suggestions:
Small batch/prototype: choose 3D printing (FDM, SLA or SLS);
Large batch/finalized product: choose injection molding.
1) Process accuracy comparison
3D printing:
SLA/DLP: accuracy of ±0.01 mm, smooth surface, suitable for precision medical or electronic parts.
SLS/MJF: accuracy of ±0.1 mm, suitable for complex structures but slightly rough surface.
FDM: lower accuracy (±0.2 mm), obvious layer pattern, need post-processing.
Injection molding:
accuracy is usually ±0.05 mm, high surface finish (Ra 0.8~1.6 μm), no additional processing required.
2)Material strength and stability
3D printing: weak interlayer bonding, which may affect mechanical properties; easy to deform at high temperatures (such as PLA softening point is 55°C).
Injection molding: The material is dense, high in strength and isotropic, and has better temperature resistance (such as ABS can withstand 80~100°C).
3) Complex structure adaptability
3D printing: It can manufacture complex structures that are difficult to achieve with traditional processes, such as hollowing and conformal water channels. For example, the curved cooling channel in the mold can improve the injection efficiency.
Injection molding: Due to the mold demolding requirements, the design must avoid internal right angles or too deep cavities, otherwise it will increase the difficulty of processing.
Decision suggestions:
High precision + complex design: choose SLA or metal 3D printing (such as SLM), but you need to accept higher costs;
High precision + large batch: injection molding combined with CNC precision mold to ensure dimensional stability.
Clear requirements: batch, budget, design complexity, precision level, material performance.
Cost accounting: compare mold costs, single-piece material costs and post-processing costs.
Technology matching:
If fast iteration or small batches are required, 3D printing is preferred;
If high strength or surface finish is required, injection molding is preferred.
Hybrid solution: For example, use 3D printing to make prototypes or conformal water channel molds, and then mass produce them through injection molding.
1) Pepsi bottle mold: By combining 3D printed inserts with traditional metal molds, the cost is reduced by 96%, and the production cycle is shortened from 4 weeks to 48 hours.
2) Medical implants: Use SLA to print high-precision prototypes, and then switch to injection molding for mass production after verification.
3) Shoe mold manufacturing: 3D printing can achieve complex patterns, replacing traditional CNC, and increasing efficiency by 50%.
Between low cost and high precision, a balance needs to be made according to specific scenarios:
3D printing: the first choice for small batches, complex designs, and rapid iterations;
Injection molding: an economical solution for large batches, high precision, and high-strength scenarios.
In the future, hybrid manufacturing (such as 3D printing molds + injection molding mass production) may become the mainstream direction for balancing cost and performance.
3D Printing vs. Injection Molding: Coexistence in the Age of Digital Manufacturing
Why Neither Technology Will "Win"—And Why That’s Good for Industry
Injection Molding remains the backbone of mass production:
Scale & Speed: Produces 10,000–1M+ identical parts at <30-second cycles (e.g., automotive trim, consumer packaging) .
Material Edge: Supports 30,000+ engineered polymers (e.g., PEEK, COC/COP) with ISO-certified mechanical properties crucial for medical/auto sectors.
Cost Structure: High initial tooling ($50k–$500k for steel molds) but pennies per part at scale.
3D Printing (Additive Manufacturing) excels in digital agility:
Zero Tooling: Direct digital-to-part production enables overnight prototyping and design iterations.
Complexity for Free: Generates hollow structures, organic lattices, and integrated assemblies impossible for molds (e.g., GE’s fuel nozzles with 20 parts consolidated into one) .
Localized Production: "Print farms" like China’s Jinqi (4,000 printers) deliver 50k+ custom toys/day to global markets, bypassing shipping/logistics .
Table: Technical & Economic Comparison
Criterion
Injection Molding
3D Printing
Optimal Batch Size
10k–1M+ units
1–10k units
Lead Time
8–16 weeks (tooling)
Hours to days
Material Range
30k+ polymers
300–500 certified materials
Part Cost at Scale
<$0.50 (e.g., bottle caps)
<$0.50 (e.g., bottle caps)
Design Constraints
Draft angles, parting lines
None
Aerospace: 55% of Boeing/Airbus suppliers now use metal AM (titanium brackets, turbine blades) to cut weight by 30–60% .
Medical: 67% of orthopedic implants (e.g., Stryker’s Tritanium) are 3D-printed for bone ingrowth optimization .
Automotive: BMW’s iFactory uses 3D-printed jigs (50% lighter) and end-use parts (e.g., Rolls-Royce bespoke components) .
Consumer Goods: Adidas’ Futurecraft and Nike’s Flyprint leverage AM for hyper-personalized shoe midsoles (1M+ pairs sold in 2024) .
3. Injection Molding’s Counter-Innovation
Traditional manufacturing is evolving:
Hybrid Tooling: 3D-printed molds with conformal cooling cut cycle times by 20% (e.g., Ford’s 96-second dashboards vs. 120 seconds) .
AI Optimization: Arburg’s self-learning systems boost yield to 97% by real-time pressure/temperature control .
Sustainable Materials: Bio-based TPU (40% lower CO₂) and chemical recycling (85% PET recovery) meet EU CBAM regulations .
Rapid Tooling: Stratasys’ 3D-printed inserts reduce mold lead times from months to days for short-run production .
Mass Customization: "Print farms" like Jinqi (China) produce 5M+铰链龙 toys/year for global e-commerce, blending AM agility with batch economics .
Digital Warehousing: Siemens’ AM Network stocks digital part files—physical goods print on-demand near customers, slashing inventory costs .
3D Printing Growth: $290B by 2025 (23.5% CAGR), driven by aerospace/medical in North America (35% revenue share) .
Injection Molding Resilience: 90% of plastic parts still molded—scale economics lock in dominance for >10k-unit orders .
Profit Pools:
AM thrives in <$100k/project niches (prototypes, custom medical).
Molding owns >$1M/project volume production .
3D printing won’t replace injection molding—it’s rewriting its role:
✅ For Innovation/R&D: AM’s speed dominates prototyping, custom implants, and complex aerospace parts.
✅ For Mass Production: Molding remains unbeatable for toothpaste caps, LEGO bricks, and iPhone casings.
✅ For the Future: Hybrid "factories of one" will merge AM’s flexibility with molding’s scale via AI-driven workflows.
Deploy AM for high-value, low-volume parts (medical, aerospace, luxury goods).
Integrate conformal cooling into molds to defend molding’s cost edge.
Monitor material breakthroughs: Ceramic AM (34% CAGR) and CFRTP composites (38% market share) .
The future isn’t winner-takes-all—it’s right tool, right job.