F&Q TECH, the reliable precision injection mold producer, endeavors to optimize the production process. We adopt state-of-the-art facilities and practised technicians to enhance productivity and increase efficiency to save time. We operate following the management method of the leading international enterprise to make communication between colleagues more efficient. Moreover, we simplify data collection and transmission to make the production process more smooth.
Our company has made significant progress in improving our international standing and even has established a brand of our own, that is, F&Q TECH. And we never stop trying to make breakthroughs in our conception of a new design that meets the principle of market-orientation so that our business is booming now.
At F&Q TECH, we offer expertise combined with personalized, one-on-one technical support. Our responsive engineers are readily accessible for all of our customers, large and small. We also provide a wide array of complimentary technical services for our customers, such as product testing or installation.
Step-by-Step Guide to Ordering with Custom Mold Requirements
Thank you for choosing F&Q-Tech for your injection molding needs. If you do not have an existing mold but have product drawings or samples, please follow the steps below to initiate the process of creating a custom mold and placing an order. If you have any questions at any stage, feel free to contact our support team at [ lyy@fsqj-tech.com].
To begin the process, please provide us with the following details:
· Product Drawings: CAD files or detailed technical drawings of the product you want to produce.
· Preferred formats: .dwg, .dxf, .step, .iges, or .pdf.
· Samples: If you have a physical sample, please send it to us for analysis.
· Shipping Address: [Your Company Name, Your Company Address, City, State, ZIP Code, Country].
· Material Requirements: Specify the type of plastic material you want to use (e.g., ABS, PC, PP).
· Quantity: Indicate the number of units you wish to produce.
· Color and Finish: Specify any color preferences or Pantone codes, and any specific surface finish requirements (e.g., glossy, matte).
You can submit this information via email to [lyy@fsqj-tech.com].
Once we receive your product details, our engineering team will review the information and assess the feasibility of the mold design. We will then provide you with a detailed quotation that includes:
· Mold Design and Manufacturing Costs: The cost associated with designing and manufacturing the custom mold.
· Production Costs: Costs based on the number of units, material type, and other specifications.
· Shipping Costs: Estimated shipping fees to your desired location.
The quotation will be sent to you within [1-3] business days. Please review it carefully and confirm your approval by replying to the email.
After you approve the quotation, our design team will create a 3D model of the mold. We will send you the design for your review and approval. Please check the following:
· Design Accuracy: Ensure that the mold design matches your product requirements.
· Dimensions and Tolerances: Verify that all dimensions and tolerances are as specified.
· Any Modifications: Let us know if any modifications are needed.
Please review the design within [1-3] days and provide feedback or approval. Delays in approval may affect the production timeline.
Once the mold design is approved, we will begin the manufacturing process. Our skilled technicians will:
· Machine the Mold: Use advanced machinery to fabricate the mold.
· Conduct Quality Checks: Perform thorough quality checks to ensure the mold meets the required standards.
· Test the Mold: Conduct test runs to ensure the mold functions correctly and produces parts to specification.
The mold manufacturing process typically takes [5] weeks. We will keep you updated on the progress.
With the mold ready, we will proceed to production. Our team will:
· Set Up the Mold: Install the mold in our injection molding machines.
· Start Production: Begin the injection molding process to produce your parts.
· Conduct Quality Assurance: Perform quality checks on the produced parts to ensure they meet your specifications.
If you have any specific quality requirements, please inform us during the order confirmation stage.
Once production is complete and quality checks are passed, we will arrange for the delivery of your products. You can choose from the following delivery options:
· Ship to Your Address: We will ship the products to your specified address.
· Pick Up at Our Facility: You can arrange to pick up the products at our facility.
After you receive your order, we would appreciate your feedback. Please let us know if you have any comments or suggestions by contacting us at [ lyy@fsqj-tech.com].
For any questions or assistance throughout the ordering process, please contact us:
· Email: [lyy@fsqj-tech.com]
· Tel / WhatsApp:[+86 136 1605 5490]
· Mold Storage: If you plan to place future orders using the same mold, we offer mold storage services. Please inquire about this option during the order process.
· Rush Orders: If you need a rush order, please inform us as soon as possible so we can accommodate your request.
When the factory starts injection molding production, it will purchase the corresponding raw materials according to the product requirements. Commonly used raw materials are ABS\PC\PP, etc. After the raw materials are ready, we start our first step: plasticization. The main purpose of the plasticization process is to heat and melt the raw materials (plastic particles) into a flowable liquid form.
Feeding: Feed the plastic particles into the barrel of the injection molding machine through the feeding port.
Heating: A heater inside the barrel heats the plastic pellets above the melting point, usually between 150°C and 350°C, depending on the type of plastic used.
Mixing and shearing: The screw rotates in the barrel, mixing and shearing the molten plastic to ensure that the material can be uniformly and consistently transferred to the next step.
Temperature control: ensures that the plastic is fully melted but not excessively degraded.
Screw speed: affects plasticization and mixing effects.
The injection stage is the process of injecting the molten liquid into the mold.
Mold Closure: The two halves of the mold are tightly closed to form a cavity.
Injection: The screw moves forward, injecting the molten plastic into the mold cavity through the nozzle.
Injection speed: affects filling time and filling quality.
Holding time: affects the dimensional stability and internal stress of the product.
The cooling phase is the process by which the plastic cools and solidifies within the mold.
Cooling time: Determine the appropriate cooling time based on product thickness and material properties.
Cooling medium: Use water or other cooling medium to exchange heat through the cooling channels in the mold.
Cooling rate: affects the crystallinity and internal stress of the product.
Mold temperature: affects the surface quality and dimensional accuracy of the product.
The demoulding stage is the process of removing the solidified plastic product from the mold.
Mold opening: The two halves of the mold separate.
Ejection: The ejection mechanism pushes the product out of the mold.
Ejection force: Ensure that the product is smoothly released from the mold without excessive deformation.
Ejection position: avoids scratches or damage to the product surface.
The four stages of the injection molding process - plasticization, injection, cooling and demolding - are each critical and affect the quality and performance of the final product. By deeply understanding and optimizing these stages, manufacturers can improve production efficiency, reduce scrap rates, and produce high-quality plastic products.
Hopefully this article will help you better understand the four key stages of the injection molding process. If you have any questions or need further advice, please feel free to contact us.
In the world of plastic products, blow molding and injection molding are two major molding technologies, but their relationship is often misunderstood. Some people say that "blow molding is a type of injection molding", but in fact, the two are completely different! They are like a pair of "twin flowers". Although they belong to the field of plastic molding, they have their own advantages in principle, application and cost. This article will take you to explore the mysteries of these two processes in depth to help you find the most suitable solution.
1. Process principle: the game between air and pressure
Blow Molding
Core principle: Use compressed air to blow the softened plastic parison to fit the inner wall of the mold to form a hollow product.
Steps: Heat the plastic → Extrude the parison → Close the mold and blow air → Cool and shape → Demold and trim.
Key equipment: Blow molding machine, mold, air compressor.
Typical applications: Hollow products such as plastic bottles, fuel tanks, and medical device containers.
Injection Molding
Core principle: Inject molten plastic into a closed mold at high pressure, and form solid or complex structural parts after cooling.
Steps: molten plastic → high pressure injection → cooling and solidification → demoulding.
Key equipment: injection molding machine, precision mold.
Typical applications: solid or high-precision parts such as mobile phone cases, gears, and auto parts.
Blow molding relies on air molding and is suitable for "hollow"; injection molding relies on high-pressure filling and specializes in "solid".
Injection molds require extremely high precision (such as CNC processing), while blow molding molds are more flexible, but are prone to problems such as flash.
Material selection
Blow molding: commonly used soft plastics (such as HDPE, LDPE, PP), suitable for containers with high flexibility requirements.
Injection molding: compatible with hard plastics (such as ABS, PC, nylon), can add glass fiber to enhance performance.
Design freedom
Blow molding is limited to hollow structures, but can achieve complex curved surfaces (such as bottles with handles).
Injection molding can produce precision parts with details such as threads and bosses, and even multi-color one-piece molding.
Case highlights:
The "star product" of blow molding: carbonated beverage bottles (stretch blow molding technology improves pressure resistance).
The "masterpiece" of injection molding: foldable safety seats (complex structure + high-strength materials).
Initial investment
Blow molding molds are low cost (only one side mold is needed), and the machine price is more affordable.
Injection molds are expensive (precision machining), but suitable for mass production to dilute the cost.
Production cycle
Blow molding is fast for single-piece molding, but post-processing (such as trimming) may increase the time consumption.
Injection molding cycle is stable, and multi-cavity molds can produce dozens of parts at the same time, which is more efficient.
Economic recommendations:
Choose blow molding for small batches of hollow parts (such as customized containers);
Choose injection molding for complex solid parts (such as electronic component housings).
Blow molding technology:
Multi-layer coextrusion: Improve barrier properties (such as anti-oxidation layer of food packaging).
Biodegradable materials: Respond to environmental protection needs, such as PLA blow molding bottles.
Injection molding technology:
Micro injection molding: Produce millimeter-level precision parts (such as medical catheters).
Smart mold: Integrated sensors monitor pressure and temperature in real time
Comparison Items
Blow molding
Injection molding
Applicable Products
Hollow containers (bottles, barrels)
Solid parts (gears, housings)
Material Type
Soft plastics (HDPE, PP)
Hard plastic (ABS, PC)
Mold Cost
Low
High
Design complexity
Medium (limited to hollow structures)
High (supports fine details)
Production batch
Small and medium batches
Large quantities
Conclusion
Blow molding and injection molding seem similar but each has its own advantages. Whether it is a lightweight mineral water bottle or a precision automotive component, the two technologies work together in a precise manner. When choosing, you need to consider product requirements, cost budget and design goals to maximize benefits.
In the development of plastic products, choosing between 3D printing and injection molding requires comprehensive consideration of factors such as cost, precision, batch size, and design complexity. The following is an analysis of the two processes from the two core dimensions of cost optimization and high-precision requirements, combined with the characteristics of the two processes, and provides a basis for decision-making.
1) Production batches determine the core cost structure
3D printing: suitable for small batches (usually <1000 pieces) or single-piece production. It does not require mold costs, has low material loss (only the support structure may waste a small amount of material), and is flexible in iteration. For example, when using FDM technology to print a prototype, the cost per piece may be only 1/10 of that of injection molding.
Injection molding: more cost-effective in large-scale (>1000 pieces) production. Although the mold development cost is high (thousands to tens of thousands of yuan), the cost per piece decreases significantly as the batch increases. For example, in one case, the injection mold cost $10,000, but the cost per piece was only $0.1 when producing 100,000 pieces.
2)Design and iteration cost comparison
3D printing: CAD models can be directly printed after modification, without additional costs, suitable for the prototype stage where the design is frequently adjusted. For example, a company shortened the R&D cycle from 4 weeks to 48 hours by using 3D printing molds.
Injection molding: Mold modification costs are high (especially metal molds), suitable for mass production after the design is finalized. If the mold structure needs to be adjusted, it may be necessary to re-open the mold, which will increase the cost by tens of thousands of yuan.
3)Material And Post-Processing Costs
3D printing: limited material types (such as PLA, nylon, resin, etc.), some high-performance materials (such as PEEK) are expensive; post-processing usually only requires grinding or sandblasting.
Injection molding: wide selection of materials (such as ABS, PP, PC, etc.), lower prices; but post-processing such as mold polishing and electroplating may increase costs.
Decision suggestions:
Small batch/prototype: choose 3D printing (FDM, SLA or SLS);
Large batch/finalized product: choose injection molding.
1) Process accuracy comparison
3D printing:
SLA/DLP: accuracy of ±0.01 mm, smooth surface, suitable for precision medical or electronic parts.
SLS/MJF: accuracy of ±0.1 mm, suitable for complex structures but slightly rough surface.
FDM: lower accuracy (±0.2 mm), obvious layer pattern, need post-processing.
Injection molding:
accuracy is usually ±0.05 mm, high surface finish (Ra 0.8~1.6 μm), no additional processing required.
2)Material strength and stability
3D printing: weak interlayer bonding, which may affect mechanical properties; easy to deform at high temperatures (such as PLA softening point is 55°C).
Injection molding: The material is dense, high in strength and isotropic, and has better temperature resistance (such as ABS can withstand 80~100°C).
3) Complex structure adaptability
3D printing: It can manufacture complex structures that are difficult to achieve with traditional processes, such as hollowing and conformal water channels. For example, the curved cooling channel in the mold can improve the injection efficiency.
Injection molding: Due to the mold demolding requirements, the design must avoid internal right angles or too deep cavities, otherwise it will increase the difficulty of processing.
Decision suggestions:
High precision + complex design: choose SLA or metal 3D printing (such as SLM), but you need to accept higher costs;
High precision + large batch: injection molding combined with CNC precision mold to ensure dimensional stability.
Clear requirements: batch, budget, design complexity, precision level, material performance.
Cost accounting: compare mold costs, single-piece material costs and post-processing costs.
Technology matching:
If fast iteration or small batches are required, 3D printing is preferred;
If high strength or surface finish is required, injection molding is preferred.
Hybrid solution: For example, use 3D printing to make prototypes or conformal water channel molds, and then mass produce them through injection molding.
1) Pepsi bottle mold: By combining 3D printed inserts with traditional metal molds, the cost is reduced by 96%, and the production cycle is shortened from 4 weeks to 48 hours.
2) Medical implants: Use SLA to print high-precision prototypes, and then switch to injection molding for mass production after verification.
3) Shoe mold manufacturing: 3D printing can achieve complex patterns, replacing traditional CNC, and increasing efficiency by 50%.
Between low cost and high precision, a balance needs to be made according to specific scenarios:
3D printing: the first choice for small batches, complex designs, and rapid iterations;
Injection molding: an economical solution for large batches, high precision, and high-strength scenarios.
In the future, hybrid manufacturing (such as 3D printing molds + injection molding mass production) may become the mainstream direction for balancing cost and performance.
From the mobile phone case and electric toothbrush in your hand to the dashboard of the car, the precision parts of medical equipment, and even the parts of spacecraft, most of these seemingly different plastic products hide the same manufacturing technology - injection molding. This process, which was born in the late 19th century, has now become the "mainstay" of modern manufacturing. Why is it so popular? This article will reveal the secrets of injection molding from multiple dimensions such as efficiency, cost, and quality.
The principle of injection molding is not complicated: heat and melt plastic particles into liquid, inject them into the cavity of a metal mold under high pressure, and demold them after cooling and solidification to obtain a product that is consistent with the shape of the mold. The whole process is similar to "pour plaster", but with industrial precision control, it can achieve mass production of complex structures with millimeter-level accuracy.
Unlike traditional cutting or manual molding, the core advantage of injection molding lies in the efficient production of "copy and paste". After a set of molds is developed, the production cycle of a single part usually takes only tens of seconds to a few minutes. For example, the injection molding of an ordinary plastic water cup only takes 30 seconds, while an automated production line can produce tens of thousands of products 24 hours a day. This efficiency is irreplaceable in areas that require large-scale production (such as daily necessities and electronic accessories).
Injection molding compresses the time dimension of traditional manufacturing to seconds. A set of ordinary molds can complete the entire process from mold closing, injection molding, pressure holding to demolding within a 10-second cycle, and it is easy for modern injection molding machines to produce 10,000 pieces per day. This efficiency revolution directly changed the logic of product development: an international toy company used high-speed injection molding technology in 2019 to shorten the new product launch cycle from the traditional 18 months to 7 months.
In terms of cost control, injection molding shows amazing economy. After the car door handle adopts the injection molding process, the unit cost is reduced by 72% compared with metal stamping, and the weight is reduced by 60%. This cost advantage is exponentially magnified in large-scale production. A home appliance company has reduced the manufacturing cost of air purifier shells with an annual output of 3 million units by 21 million yuan by optimizing the injection molding process.
The integration of automation systems and injection molding technology has given birth to a 24-hour "dark factory". In the injection molding workshop of a German auto parts factory, 128 injection molding machines are dispatched by the central control system to achieve unmanned operation of the entire process from raw material drying to finished product packaging. While reducing labor costs by 83%, the product defect rate is controlled within 0.12‰.
In a smart factory, a 1,600-ton injection molding machine is performing "speed and passion". As the mold closes quickly, the molten plastic at 280°C instantly fills the mold cavity under a high pressure of 150MPa. After just 18 seconds, 64 mobile phone shells are neatly arranged on the conveyor belt. This magical production efficiency stems from the essential characteristics of injection molding: single molding and batch replication. Compared with the "subtractive manufacturing" of traditional mechanical processing, injection molding achieves one-time molding of geometrically complex structures through "additive manufacturing", which reduces the effective processing time of a single product by more than 90%.
The standardized design of molds pushes efficiency to the extreme. Toyota's automotive interior parts production line in Japan uses a modular mold system. By simply replacing local inserts, the switching production of parts for different models can be completed within 2 hours. This flexible manufacturing feature enables the annual production capacity of a single production line to exceed 5 million pieces, which is equivalent to the birth of 10 precision parts every minute.
Although the initial development cost of the mold is high (ranging from a few thousand to hundreds of thousands of yuan), the cost per piece will drop sharply when the output reaches a certain scale. For example, the development cost of a mobile phone shell mold is 100,000 yuan. When 1 million pieces are produced, the cost of each mold is only 0.1 yuan; while the cost of 3D printing the same part may be as high as 5 yuan per piece. This "economy of scale" feature makes injection molding the optimal solution for mass production of millions of units.
The initial investment in the mold is like a math problem: when the development cost of a certain electric toothbrush shell mold is 120,000 US dollars, the cost of producing the first shell is as high as 120,000 US dollars, but when the output reaches the million level, the mold cost is diluted to 0.12 US dollars per piece. This unique cost curve explains why 90% of consumer electronic products choose injection molding. According to a study by Boston Consulting Group in the United States, when the annual output exceeds 50,000 pieces, the comprehensive cost of injection molding is 76% lower than 3D printing and 89% lower than machining.
In terms of material utilization, injection molding shows amazing advantages. By optimizing the hot runner system, a German company reduced the scrap rate of laptop shell production from 15% to 0.8%, saving 420 tons of engineering plastics each year. This "watertight" processing method, combined with an automated pickup system and online quality inspection, has built a nearly perfect production closed loop.
Modern injection molding technology can achieve "integrated molding", directly manufacturing complex structures that traditionally require multiple parts to assemble (such as flip covers with movable hinges and hollow pipes inside). Take the automobile intake manifold as an example. Traditional metal parts require more than 20 parts to be welded, while injection molded nylon parts can be molded in one go, reducing weight by 40% and providing better performance.
There are more than 10,000 types of plastics compatible with injection molding:
General-purpose plastics (such as PP and ABS) are used in daily necessities;
Engineering plastics (such as PEEK and nylon) are resistant to high temperatures and corrosion and can replace metals;
Biodegradable materials (such as PLA) cater to environmental protection trends;
Even metal powders and ceramic particles can be processed through "metal/ceramic injection molding" (MIM/CIM) technology.
This diversity allows injection molding technology to span multiple fields such as people's livelihood, medical care, and aerospace.
The performance breakthrough of engineering plastics is redefining the possibilities of materials. The strength retention rate of PPSU material at 280°C exceeds 85%, successfully replacing metal to manufacture steam valves; the specific strength of carbon fiber reinforced PEEK material is 3 times that of titanium alloy, and has been used in spacecraft load-bearing structures. The emergence of these special materials has enabled injection molding products to continue to penetrate from the field of daily necessities to high-end manufacturing.
The green material revolution promotes the sustainable development of injection molding technology. The application of bio-based PLA materials in the field of tableware has reduced the carbon footprint of a single lunch box by 68%; chemical recycling PET technology has achieved closed-loop production, and a beverage bottle manufacturer has reduced the use of 32,000 tons of virgin plastic each year through this technology. The combination of material innovation and environmental protection needs is reshaping the ecological logic of the entire industrial chain.
Customized matching of materials and processes opens a new era. The combination of liquid silicone (LSR) and micro-foaming technology makes car seats both supportive and breathable; the synergy of conductive polymers and two-color injection molding technology allows the smart bracelet antenna and shell to be perfectly integrated. This precise material and process matching has given birth to unprecedented product forms.
Standing at the threshold of Industry 4.0 and looking back, injection molding has evolved from a simple manufacturing technology to a core engine driving innovation. This technology is breaking through the boundaries of physics and chemistry and transforming material possibilities into real productivity. When 3D printing triggers people's romantic imagination of manufacturing, injection molding silently supports the construction of the material world of modern civilization with a hundred times the efficiency and precision of the former. In the future, with the deep integration of smart materials and digital twin technology, injection molding may evolve into a more amazing form and continue to write the efficiency legend in the history of human manufacturing.
In the Shenzhen Materials Laboratory, engineers are debugging PEEK composite materials containing 35% glass fiber. This special plastic that can be used for a long time at 260°C is formed into drone structural parts through micro-foaming injection molding technology, which reduces weight by 20% and increases strength by 15%. Modern injection molding technology has broken through the traditional cognitive boundaries: liquid silicone (LSR) injection molding makes baby pacifiers both safe and flexible; metal powder injection molding (MIM) creates clock gears thinner than a hair; biodegradable plastics are reshaping the ecology of the packaging industry.
Design freedom is another breakthrough dimension. A medical company uses stacked mold technology to achieve 96-cavity insulin pen parts production on conventional equipment, with wall thickness differences controlled at ±0.02mm. Conformal cooling water channel technology allows mold temperature control accuracy to reach ±1°C, making the optical performance of lens products comparable to glass products. These technological innovations continue to expand the imagination of industrial design.
Standing at the crossroads of the era of intelligent manufacturing, injection molding is undergoing a digital transformation. IoT sensors monitor the cavity pressure and temperature curve in real time, artificial intelligence algorithms autonomously optimize process parameters, and 3D printing technology subverts traditional mold manufacturing methods. In a lighthouse factory in Jiangsu, there are only three engineers in the entire injection molding workshop monitoring 20 smart devices, and the per capita output value is 15 times that of traditional workshops. This evolution not only continues the vitality of injection molding, but also spawns green solutions such as bio-based plastics and chemical recycling in the context of carbon neutrality, allowing this century-old process to continue to rejuvenate. From daily necessities to cutting-edge technology, injection molding is like a master key, constantly opening up new possibilities for modern manufacturing.
High-precision molds (error ±0.005mm) combined with computer control can ensure that the dimensions of millions of products are almost exactly the same. Taking medical syringes as an example, the clearance between the injection-molded syringe barrel and the piston must be controlled within 0.01mm, which is impossible to achieve with manual production.
The processing accuracy of modern injection molds has reached the micron level, which is equivalent to controlling the error to no more than a grain of sand on an area the size of a football field. This breakthrough in precision has enabled revolutionary innovation in the medical field: the precision gear assembly of the implantable insulin pump has achieved a matching tolerance of 0.02mm through micro-injection molding technology, which is smaller than the diameter of a red blood cell.
Complex structure integrated molding technology is rewriting product design rules. The latest folding wing structure launched by a drone manufacturer uses gas-assisted injection molding technology to integrate 17 traditional parts into one integral component, reducing assembly processes by 94% and increasing structural strength by 300%. This breakthrough in design freedom allows product engineers to boldly realize innovative ideas that were unimaginable in the past.
Innovations in surface treatment technology have allowed injection molded parts to break through material limitations. IMD (in-mold decoration) technology allows mobile phone shells to transfer textures simultaneously during the injection molding process, and its wear resistance is 5 times higher than that of traditional spraying processes; the application of nano-coating technology allows plastic lenses to reach the light transmittance of optical glass. These breakthroughs continue to expand the application boundaries of injection molded products.
Miniaturization revolution: Nano-molding technology (NMT) allows the metal frame of the mobile phone and the plastic antenna to be molded into one piece, achieving "zero interference" with 5G signals.
Green manufacturing: Hot runner technology reduces waste, and bio-based plastics are recycled, making injection molding more environmentally friendly.
Intelligent future: AI monitors injection pressure and temperature in real time, automatically optimizes parameters, and increases the yield rate to more than 99.9%.
Injection molding is not a panacea. Small-batch production (such as customized samples) may not be as cost-effective as 3D printing due to the high mold cost; oversized parts (such as wind turbine blades) require other processes. However, with the development of mold 3D printing and rapid mold change technology, these limitations are gradually being broken.
From the simple injection molding of celluloid in the 19th century to today's intelligent and green precision manufacturing, injection molding has defined modern industrial aesthetics with "efficiency, precision and flexibility". The next time you pick up a plastic product, think about it: behind this seemingly ordinary little object, there may be a set of molds worth millions and a century-long technological evolution journey.