Immutability, permanency and stability are three comments that precision injection molding has received from its buyers, which shows F&Q TECH' s strong determination and perseverance of pursuing the highest standard of quality. The product is manufactured in a first-rate production line so that its materials and craftsmanship enjoy more durable quality than our competitors.
Market research is a very important piece of the market expansion process for our F&Q TECH brand. We spare no efforts to know about our potential customer base and our competition, which help us accurately identify our niche in this new market and to decide whether or not we should focus on this potential market. This process has made our international market expansion more smoothly.
In addition to high-quality products like precision injection molding, good customer service is also our lifeblood. Every customer is unique with their set of demands or needs. At F&Q TECH, customers can get one-stop customization service from design to delivery.
In the world of manufacturing, precision and complexity are the name of the game. As industries evolve, the demand for components with intricate geometries and high precision is on the rise. When it comes to meeting these demands, not all CNC machines are created equal. 5-axis CNC machines stand out as the gold standard for manufacturing complex and precision parts.
• If your parts have intricate shapes, contours, or multiple faces that need to be machined, 5-axis machining is highly beneficial. It allows for simultaneous movement along multiple axes, enabling the creation of complex geometries that are difficult or impossible to achieve with 3-axis machines.
• Example: Aerospace components, turbine blades, and medical implants often require complex shapes that are best suited for 5-axis machining.
• If your parts need to be machined on multiple sides without manual repositioning, 5-axis machines can significantly reduce setup times and improve accuracy. This is particularly useful for parts that require machining on five or six sides.
• 5-axis machines are capable of achieving tighter tolerances and higher precision due to their ability to maintain optimal tool orientation and minimize tool vibration. If your parts require high precision, 5-axis machining can deliver the required accuracy.
• For high-volume production runs, 5-axis machining can offer significant efficiency gains. The ability to perform multiple operations in a single setup reduces cycle times and increases throughput.
• Data Point: According to a study by the Association for Manufacturing Technology (AMT), 5-axis machining can increase production efficiency by up to 40% compared to 3-axis machining.
• If your production involves a high mix of parts with varying complexities, 5-axis machines can provide the flexibility needed to switch between different jobs quickly. This can lead to faster setup times and reduced downtime.
• For businesses that operate on a JIT basis, the faster turnaround times and increased efficiency of 5-axis machining can help meet tight delivery schedules and reduce lead times.
• 5-axis machines can handle a wide range of materials, including metals (aluminum, stainless steel, titanium), plastics, and composites. If your production involves diverse materials, 5-axis machining offers the versatility needed to process them effectively.
• Some 5-axis machines are designed to accommodate larger workpieces, which can be advantageous if your production includes large or oversized parts. However, it’s important to ensure that the machine’s working envelope meets your size requirements.
When it comes to manufacturing complex and precision parts, the advantages of 5-axis CNC machining are clear. From unmatched precision and efficiency to the ability to handle the most complex geometries, 5-axis CNC machines offer a level of capability that is unmatched by traditional machining methods. By choosing a factory equipped with 5-axis technology, you are ensuring that your project is in the hands of experts who can deliver superior quality, consistency, and efficiency.
So, if you're looking to take your manufacturing to the next level, consider partnering with a factory that has 5-axis CNC machines. The benefits are undeniable, and the results will speak for themselves.
Step-by-Step Guide to Placing an Order with Your Own Mold
Thank you for choosing F&Q-Tech for your injection molding needs. If you have your own mold, please follow the steps below to place an order with us. If you have any questions at any stage, feel free to contact our support team at lyy@fsqj-tech.com.
Before placing an order, please ensure that your mold meets the following specifications:
• Material Compatibility: Confirm that the mold is suitable for the type of plastic material you intend to use.
• Mold Dimensions: Verify that the mold dimensions match your product requirements.
• Mold Condition: Ensure that the mold is in good condition and ready for production.
If you need assistance with mold verification, please contact our technical team at lyy@fsqj-tech.com.
Once you have verified your mold specifications, please send your mold to our facility. You can choose to:
• Ship the Mold: Use a reliable courier service to ship the mold to our address:
[Please contact our team (lyy@fsqj-tech.com) for an address]
Please include your contact information and order details inside the package.
• Deliver the Mold In-Person: If you prefer to deliver the mold in person, please schedule a drop-off time with our logistics team at [lyy@fsqj-tech.com].
Please ensure that your mold is securely packaged to prevent any damage during transit.
Step 3: Confirm Order Details
After we receive your mold, our team will inspect it and confirm the order details with you. Please provide the following information:
• Product Quantity: Specify the number of units you wish to produce.
• Material Type: Indicate the type of plastic material you want to use (e.g., ABS, PC, PP).
• Color Requirements: Specify any color preferences or Pantone codes.
• Surface Finish: Indicate any specific surface finish requirements (e.g., glossy, matte).
• Delivery Date: Provide your desired delivery date.
You can submit this information via email to [lyy@fsqj-tech.com] .
Based on the information you provide, we will generate a detailed quotation for your order. The quotation will include:
• Mold Setup Fees: Any fees associated with setting up your mold.
• Production Costs: Costs based on the number of units and material type.
• Shipping Costs: Estimated shipping fees to your desired location.
Once the quotation is ready, we will send it to you for review. Please review the details and confirm your approval by replying to the email
After you approve the quotation, we will begin the production process. Our team will:
• Set Up Your Mold: Prepare the mold for production.
• Start Production: Begin injection molding your products.
• Conduct Quality Checks: Perform thorough quality checks to ensure your products meet the required standards.
If you have any specific quality requirements, please inform us during the order confirmation stage.
Once production is complete and quality checks are passed, we will arrange for the delivery of your products. You can choose from the following delivery options:
• Ship to Your Address: We will ship the products to your specified address.
• Pick Up at Our Facility: You can arrange to pick up the products at our facility.
After you receive your order, we would appreciate your feedback. Please let us know if you have any comments or suggestions by contacting us at email.
For any questions or assistance throughout the ordering process, please contact us:
Email: [lyy@fsqj-tech.com]
WhatsApp: [+86 136 1605 5490]
• Mold Storage: If you plan to place future orders using the same mold, we offer mold storage services. Please inquire about this option during the order process.
• Rush Orders: If you need a rush order, please inform us as soon as possible so we can accommodate your request.
This guide should help your customers understand the process of placing an order with their own molds and ensure a smooth and efficient transaction.
When the factory starts injection molding production, it will purchase the corresponding raw materials according to the product requirements. Commonly used raw materials are ABS\PC\PP, etc. After the raw materials are ready, we start our first step: plasticization. The main purpose of the plasticization process is to heat and melt the raw materials (plastic particles) into a flowable liquid form.
Feeding: Feed the plastic particles into the barrel of the injection molding machine through the feeding port.
Heating: A heater inside the barrel heats the plastic pellets above the melting point, usually between 150°C and 350°C, depending on the type of plastic used.
Mixing and shearing: The screw rotates in the barrel, mixing and shearing the molten plastic to ensure that the material can be uniformly and consistently transferred to the next step.
Temperature control: ensures that the plastic is fully melted but not excessively degraded.
Screw speed: affects plasticization and mixing effects.
The injection stage is the process of injecting the molten liquid into the mold.
Mold Closure: The two halves of the mold are tightly closed to form a cavity.
Injection: The screw moves forward, injecting the molten plastic into the mold cavity through the nozzle.
Injection speed: affects filling time and filling quality.
Holding time: affects the dimensional stability and internal stress of the product.
The cooling phase is the process by which the plastic cools and solidifies within the mold.
Cooling time: Determine the appropriate cooling time based on product thickness and material properties.
Cooling medium: Use water or other cooling medium to exchange heat through the cooling channels in the mold.
Cooling rate: affects the crystallinity and internal stress of the product.
Mold temperature: affects the surface quality and dimensional accuracy of the product.
The demoulding stage is the process of removing the solidified plastic product from the mold.
Mold opening: The two halves of the mold separate.
Ejection: The ejection mechanism pushes the product out of the mold.
Ejection force: Ensure that the product is smoothly released from the mold without excessive deformation.
Ejection position: avoids scratches or damage to the product surface.
The four stages of the injection molding process - plasticization, injection, cooling and demolding - are each critical and affect the quality and performance of the final product. By deeply understanding and optimizing these stages, manufacturers can improve production efficiency, reduce scrap rates, and produce high-quality plastic products.
Hopefully this article will help you better understand the four key stages of the injection molding process. If you have any questions or need further advice, please feel free to contact us.
In April 2025, Apple CEO Tim Cook said in an interview: "The core reason why Apple insists on manufacturing in China is not cheap labor, but China's irreplaceable 'skill density'." This view not only reveals the underlying logic of Apple's supply chain, but also reflects China's global competitiveness in the field of precision manufacturing. This article will deeply analyze how China has become the preferred partner for CNC processing and mold injection services for European and American companies by relying on its technical talent reserves, supply chain efficiency and innovation ecology.
Cook has repeatedly stressed that the core advantage of China's manufacturing industry lies in its large-scale and systematic talent pool. For example, the number of mold engineers in a certain province in China can "fill several football fields", while the United States "can't even gather enough engineers for a meeting." This gap stems from:
Education system support: China's vocational education system focuses on training technical workers, covering high-skilled fields such as CNC programming and mold design.
Industry chain collaboration: From raw materials (such as aluminum alloys and engineering plastics) to precision processing, China has formed a "one-hour industrial circle" to achieve rapid response and cost optimization.
Apple products require mold precision up to micron level (such as the surface fit of iPhone shell), which relies on the following technological breakthroughs:
Popularization of 5-axis CNC machining: China's leading factories have widely used 5-axis linkage machine tools, which can process complex curved parts with an accuracy of ±0.01mm.
Injection molding process innovation: For example, the glass panel produced by Lens Technology for Apple Vision Pro uses high-precision hot bending technology, with a yield rate of over 99%.
Dimensions
Comprehensive cost
Delivery cycle
Technical adaptability
Chinese Manufacturers
Labor + equipment depreciation costs are 30%-50% lower
Average 2-4 weeks (relying on clustered supply chain)
Support flexible production from prototype to mass production
European and American local suppliers
High labor cost, suitable for small batch customization
Prefer standardized large-volume orders
Complex parts take 6-8 weeks
Case:
A German car brand transferred its aluminum alloy wheel CNC processing orders to China, reducing costs by 40% and shortening delivery time to 3 weeks.
A US medical company commissioned a Chinese manufacturer to produce disposable endoscope housings by injection molding, which passed ISO 13485 certification and had a defect rate of less than 0.1%.
Carbon neutrality goal: China's leading suppliers (such as BYD and Luxshare Precision) have pledged to achieve carbon neutrality for Apple orders by 2030, using environmentally friendly materials such as recycled aluminum and bio-based plastics.
Process optimization: Through AI-driven tool path planning, material waste in CNC processing is reduced, and the waste recovery rate exceeds 90%.
Cook clarified: "The iPhone is not only 'assembled in China', its core components (such as glass cover and metal structural parts) rely on the precision processing capabilities of Chinese manufacturers." For example:
Lens Technology: Provides super-ceramic glass panels for iPhone, with 4 times higher drop resistance, relying on nano-level CNC polishing technology.
Everwin Precision: Uses 100% recycled aluminum to manufacture MacBook shells, taking into account lightweight and environmental protection requirements.
Industrial 4.0 factory: For example, BYD's "Using iPad to Produce iPad" project uses automated optical inspection (AOI) equipment to achieve real-time defect identification.
Cross-border collaboration: Chinese manufacturers provide online quotation systems and production progress tracking platforms, and European and American customers can remotely monitor order status.
Certifications: ISO 9001 (quality management), IATF 16949 (automotive), ISO 13485 (medical).
Equipment list: factories equipped with high-end machine tools such as DMG MORI and MAZAK are preferred.
Intellectual property protection: Sign an NDA agreement and select compliant suppliers that have served Apple, Tesla and other companies.
Phased cooperation: Start with small batch trial production (e.g. 500 pieces) to verify quality stability, and then expand to large-scale orders.
Third-party quality inspection: CMM test report and material composition analysis certificate are required.
Challenges: low-cost competition in Southeast Asia, and the "nearshore outsourcing" policy in Europe and the United States (such as the US "CHIP Act").
Opportunities:
High-end technology: China's 5-axis CNC machine tool localization rate is expected to reach 29.2% in 2029, breaking the monopoly of Germany and Japan.
Globalization of services: China-Europe Express and RCEP agreements reduce cross-border logistics costs, and door-to-door time is compressed to 15 days.
Conclusion:
Cook's affirmation of Made in China confirms the core logic of "technological density" replacing "low cost" in the reconstruction of the global industrial chain. For European and American companies, choosing Chinese CNC processing and mold injection molding service providers is not only a cost consideration, but also a strategic investment in precision manufacturing capabilities and supply chain resilience.
In the world of plastic products, blow molding and injection molding are two major molding technologies, but their relationship is often misunderstood. Some people say that "blow molding is a type of injection molding", but in fact, the two are completely different! They are like a pair of "twin flowers". Although they belong to the field of plastic molding, they have their own advantages in principle, application and cost. This article will take you to explore the mysteries of these two processes in depth to help you find the most suitable solution.
1. Process principle: the game between air and pressure
Blow Molding
Core principle: Use compressed air to blow the softened plastic parison to fit the inner wall of the mold to form a hollow product.
Steps: Heat the plastic → Extrude the parison → Close the mold and blow air → Cool and shape → Demold and trim.
Key equipment: Blow molding machine, mold, air compressor.
Typical applications: Hollow products such as plastic bottles, fuel tanks, and medical device containers.
Injection Molding
Core principle: Inject molten plastic into a closed mold at high pressure, and form solid or complex structural parts after cooling.
Steps: molten plastic → high pressure injection → cooling and solidification → demoulding.
Key equipment: injection molding machine, precision mold.
Typical applications: solid or high-precision parts such as mobile phone cases, gears, and auto parts.
Blow molding relies on air molding and is suitable for "hollow"; injection molding relies on high-pressure filling and specializes in "solid".
Injection molds require extremely high precision (such as CNC processing), while blow molding molds are more flexible, but are prone to problems such as flash.
Material selection
Blow molding: commonly used soft plastics (such as HDPE, LDPE, PP), suitable for containers with high flexibility requirements.
Injection molding: compatible with hard plastics (such as ABS, PC, nylon), can add glass fiber to enhance performance.
Design freedom
Blow molding is limited to hollow structures, but can achieve complex curved surfaces (such as bottles with handles).
Injection molding can produce precision parts with details such as threads and bosses, and even multi-color one-piece molding.
Case highlights:
The "star product" of blow molding: carbonated beverage bottles (stretch blow molding technology improves pressure resistance).
The "masterpiece" of injection molding: foldable safety seats (complex structure + high-strength materials).
Initial investment
Blow molding molds are low cost (only one side mold is needed), and the machine price is more affordable.
Injection molds are expensive (precision machining), but suitable for mass production to dilute the cost.
Production cycle
Blow molding is fast for single-piece molding, but post-processing (such as trimming) may increase the time consumption.
Injection molding cycle is stable, and multi-cavity molds can produce dozens of parts at the same time, which is more efficient.
Economic recommendations:
Choose blow molding for small batches of hollow parts (such as customized containers);
Choose injection molding for complex solid parts (such as electronic component housings).
Blow molding technology:
Multi-layer coextrusion: Improve barrier properties (such as anti-oxidation layer of food packaging).
Biodegradable materials: Respond to environmental protection needs, such as PLA blow molding bottles.
Injection molding technology:
Micro injection molding: Produce millimeter-level precision parts (such as medical catheters).
Smart mold: Integrated sensors monitor pressure and temperature in real time
Comparison Items
Blow molding
Injection molding
Applicable Products
Hollow containers (bottles, barrels)
Solid parts (gears, housings)
Material Type
Soft plastics (HDPE, PP)
Hard plastic (ABS, PC)
Mold Cost
Low
High
Design complexity
Medium (limited to hollow structures)
High (supports fine details)
Production batch
Small and medium batches
Large quantities
Conclusion
Blow molding and injection molding seem similar but each has its own advantages. Whether it is a lightweight mineral water bottle or a precision automotive component, the two technologies work together in a precise manner. When choosing, you need to consider product requirements, cost budget and design goals to maximize benefits.