F&Q TECH improves the performance of advanced plastic injection molding through various methods. Made from raw materials of high purity, the product is expected to have more stable performance. It is found to conform to the requirements of ISO 9001. The product is subject to adjustments in manufacturing process so as to meet higher market requirements.
F&Q TECH may be expected to influence a new generation with our highly innovative ideas and modern design concepts. And we own a highly professional R&D engineer team who has done a lot of work to support our progressional science and technology innovation, which is the main reason that our F&Q TECH branded products have taken precedence in the buying trend and that they are very popular in the industry now.
At F&Q TECH, our customer service is guaranteed to be as reliable as our advanced plastic injection molding and other products. To better serve customers, we have successfully set up a group of service team to answer questions and solve the problems promptly.
Step-by-Step Guide to Ordering with Custom Mold Requirements
Thank you for choosing F&Q-Tech for your injection molding needs. If you do not have an existing mold but have product drawings or samples, please follow the steps below to initiate the process of creating a custom mold and placing an order. If you have any questions at any stage, feel free to contact our support team at [ lyy@fsqj-tech.com].
To begin the process, please provide us with the following details:
· Product Drawings: CAD files or detailed technical drawings of the product you want to produce.
· Preferred formats: .dwg, .dxf, .step, .iges, or .pdf.
· Samples: If you have a physical sample, please send it to us for analysis.
· Shipping Address: [Your Company Name, Your Company Address, City, State, ZIP Code, Country].
· Material Requirements: Specify the type of plastic material you want to use (e.g., ABS, PC, PP).
· Quantity: Indicate the number of units you wish to produce.
· Color and Finish: Specify any color preferences or Pantone codes, and any specific surface finish requirements (e.g., glossy, matte).
You can submit this information via email to [lyy@fsqj-tech.com].
Once we receive your product details, our engineering team will review the information and assess the feasibility of the mold design. We will then provide you with a detailed quotation that includes:
· Mold Design and Manufacturing Costs: The cost associated with designing and manufacturing the custom mold.
· Production Costs: Costs based on the number of units, material type, and other specifications.
· Shipping Costs: Estimated shipping fees to your desired location.
The quotation will be sent to you within [1-3] business days. Please review it carefully and confirm your approval by replying to the email.
After you approve the quotation, our design team will create a 3D model of the mold. We will send you the design for your review and approval. Please check the following:
· Design Accuracy: Ensure that the mold design matches your product requirements.
· Dimensions and Tolerances: Verify that all dimensions and tolerances are as specified.
· Any Modifications: Let us know if any modifications are needed.
Please review the design within [1-3] days and provide feedback or approval. Delays in approval may affect the production timeline.
Once the mold design is approved, we will begin the manufacturing process. Our skilled technicians will:
· Machine the Mold: Use advanced machinery to fabricate the mold.
· Conduct Quality Checks: Perform thorough quality checks to ensure the mold meets the required standards.
· Test the Mold: Conduct test runs to ensure the mold functions correctly and produces parts to specification.
The mold manufacturing process typically takes [5] weeks. We will keep you updated on the progress.
With the mold ready, we will proceed to production. Our team will:
· Set Up the Mold: Install the mold in our injection molding machines.
· Start Production: Begin the injection molding process to produce your parts.
· Conduct Quality Assurance: Perform quality checks on the produced parts to ensure they meet your specifications.
If you have any specific quality requirements, please inform us during the order confirmation stage.
Once production is complete and quality checks are passed, we will arrange for the delivery of your products. You can choose from the following delivery options:
· Ship to Your Address: We will ship the products to your specified address.
· Pick Up at Our Facility: You can arrange to pick up the products at our facility.
After you receive your order, we would appreciate your feedback. Please let us know if you have any comments or suggestions by contacting us at [ lyy@fsqj-tech.com].
For any questions or assistance throughout the ordering process, please contact us:
· Email: [lyy@fsqj-tech.com]
· Tel / WhatsApp:[+86 136 1605 5490]
· Mold Storage: If you plan to place future orders using the same mold, we offer mold storage services. Please inquire about this option during the order process.
· Rush Orders: If you need a rush order, please inform us as soon as possible so we can accommodate your request.
When the factory starts injection molding production, it will purchase the corresponding raw materials according to the product requirements. Commonly used raw materials are ABS\PC\PP, etc. After the raw materials are ready, we start our first step: plasticization. The main purpose of the plasticization process is to heat and melt the raw materials (plastic particles) into a flowable liquid form.
Feeding: Feed the plastic particles into the barrel of the injection molding machine through the feeding port.
Heating: A heater inside the barrel heats the plastic pellets above the melting point, usually between 150°C and 350°C, depending on the type of plastic used.
Mixing and shearing: The screw rotates in the barrel, mixing and shearing the molten plastic to ensure that the material can be uniformly and consistently transferred to the next step.
Temperature control: ensures that the plastic is fully melted but not excessively degraded.
Screw speed: affects plasticization and mixing effects.
The injection stage is the process of injecting the molten liquid into the mold.
Mold Closure: The two halves of the mold are tightly closed to form a cavity.
Injection: The screw moves forward, injecting the molten plastic into the mold cavity through the nozzle.
Injection speed: affects filling time and filling quality.
Holding time: affects the dimensional stability and internal stress of the product.
The cooling phase is the process by which the plastic cools and solidifies within the mold.
Cooling time: Determine the appropriate cooling time based on product thickness and material properties.
Cooling medium: Use water or other cooling medium to exchange heat through the cooling channels in the mold.
Cooling rate: affects the crystallinity and internal stress of the product.
Mold temperature: affects the surface quality and dimensional accuracy of the product.
The demoulding stage is the process of removing the solidified plastic product from the mold.
Mold opening: The two halves of the mold separate.
Ejection: The ejection mechanism pushes the product out of the mold.
Ejection force: Ensure that the product is smoothly released from the mold without excessive deformation.
Ejection position: avoids scratches or damage to the product surface.
The four stages of the injection molding process - plasticization, injection, cooling and demolding - are each critical and affect the quality and performance of the final product. By deeply understanding and optimizing these stages, manufacturers can improve production efficiency, reduce scrap rates, and produce high-quality plastic products.
Hopefully this article will help you better understand the four key stages of the injection molding process. If you have any questions or need further advice, please feel free to contact us.
In the development of plastic products, choosing between 3D printing and injection molding requires comprehensive consideration of factors such as cost, precision, batch size, and design complexity. The following is an analysis of the two processes from the two core dimensions of cost optimization and high-precision requirements, combined with the characteristics of the two processes, and provides a basis for decision-making.
1) Production batches determine the core cost structure
3D printing: suitable for small batches (usually <1000 pieces) or single-piece production. It does not require mold costs, has low material loss (only the support structure may waste a small amount of material), and is flexible in iteration. For example, when using FDM technology to print a prototype, the cost per piece may be only 1/10 of that of injection molding.
Injection molding: more cost-effective in large-scale (>1000 pieces) production. Although the mold development cost is high (thousands to tens of thousands of yuan), the cost per piece decreases significantly as the batch increases. For example, in one case, the injection mold cost $10,000, but the cost per piece was only $0.1 when producing 100,000 pieces.
2)Design and iteration cost comparison
3D printing: CAD models can be directly printed after modification, without additional costs, suitable for the prototype stage where the design is frequently adjusted. For example, a company shortened the R&D cycle from 4 weeks to 48 hours by using 3D printing molds.
Injection molding: Mold modification costs are high (especially metal molds), suitable for mass production after the design is finalized. If the mold structure needs to be adjusted, it may be necessary to re-open the mold, which will increase the cost by tens of thousands of yuan.
3)Material And Post-Processing Costs
3D printing: limited material types (such as PLA, nylon, resin, etc.), some high-performance materials (such as PEEK) are expensive; post-processing usually only requires grinding or sandblasting.
Injection molding: wide selection of materials (such as ABS, PP, PC, etc.), lower prices; but post-processing such as mold polishing and electroplating may increase costs.
Decision suggestions:
Small batch/prototype: choose 3D printing (FDM, SLA or SLS);
Large batch/finalized product: choose injection molding.
1) Process accuracy comparison
3D printing:
SLA/DLP: accuracy of ±0.01 mm, smooth surface, suitable for precision medical or electronic parts.
SLS/MJF: accuracy of ±0.1 mm, suitable for complex structures but slightly rough surface.
FDM: lower accuracy (±0.2 mm), obvious layer pattern, need post-processing.
Injection molding:
accuracy is usually ±0.05 mm, high surface finish (Ra 0.8~1.6 μm), no additional processing required.
2)Material strength and stability
3D printing: weak interlayer bonding, which may affect mechanical properties; easy to deform at high temperatures (such as PLA softening point is 55°C).
Injection molding: The material is dense, high in strength and isotropic, and has better temperature resistance (such as ABS can withstand 80~100°C).
3) Complex structure adaptability
3D printing: It can manufacture complex structures that are difficult to achieve with traditional processes, such as hollowing and conformal water channels. For example, the curved cooling channel in the mold can improve the injection efficiency.
Injection molding: Due to the mold demolding requirements, the design must avoid internal right angles or too deep cavities, otherwise it will increase the difficulty of processing.
Decision suggestions:
High precision + complex design: choose SLA or metal 3D printing (such as SLM), but you need to accept higher costs;
High precision + large batch: injection molding combined with CNC precision mold to ensure dimensional stability.
Clear requirements: batch, budget, design complexity, precision level, material performance.
Cost accounting: compare mold costs, single-piece material costs and post-processing costs.
Technology matching:
If fast iteration or small batches are required, 3D printing is preferred;
If high strength or surface finish is required, injection molding is preferred.
Hybrid solution: For example, use 3D printing to make prototypes or conformal water channel molds, and then mass produce them through injection molding.
1) Pepsi bottle mold: By combining 3D printed inserts with traditional metal molds, the cost is reduced by 96%, and the production cycle is shortened from 4 weeks to 48 hours.
2) Medical implants: Use SLA to print high-precision prototypes, and then switch to injection molding for mass production after verification.
3) Shoe mold manufacturing: 3D printing can achieve complex patterns, replacing traditional CNC, and increasing efficiency by 50%.
Between low cost and high precision, a balance needs to be made according to specific scenarios:
3D printing: the first choice for small batches, complex designs, and rapid iterations;
Injection molding: an economical solution for large batches, high precision, and high-strength scenarios.
In the future, hybrid manufacturing (such as 3D printing molds + injection molding mass production) may become the mainstream direction for balancing cost and performance.
Injection molding is an important process for manufacturing a variety of plastic parts. Its flexibility enables it to produce a variety of products from thin to thick walls. However, there are certain limitations to the thickness of injection molding, and overly thick plastic parts may face a series of technical challenges during the production process. This article will explore the thickness range of injection molding, factors that affect thickness, possible technical challenges, and how to optimize the molding process.
Plastic parts molded by injection molding can generally range in thickness from a few millimeters to several centimeters. For most plastic parts, a common thickness range is 1-10 mm. For thick-walled products, the injection molding process can mold greater thicknesses, even up to 30 mm or more, but this usually depends on the type of material used, the mold design, and the capabilities of the injection molding machine.
In injection molding, the thickness of a part is affected by several factors. First, the fluidity of the plastic material is inversely proportional to its thickness. Thicker parts require the material to have better fluidity so that they can evenly fill the mold. Second, mold design is also crucial. The mold's cooling system, exhaust system, and runner design must all take into account the molding needs of thicker parts. Finally, the injection pressure and injection speed of the injection molding machine also need to be adjusted accordingly to ensure that thick-walled products can be molded smoothly.
When the thickness of injection molded parts is too large, there are many technical challenges. First, thicker plastic parts require longer injection cycles because the plastic takes longer to fill the mold and cool to solidify. Second, thicker parts are prone to uneven shrinkage during the cooling process, which can cause warping, cracking, or dimensional instability of the parts. In order to ensure the quality of thick-walled injection molded products, the cooling system and mold design need to be optimized to ensure uniform cooling and solidification of the plastic.
In order to solve the challenges faced by thick-wall injection molding, a series of optimization measures can be taken. First, choose plastic materials with higher fluidity so that they can flow more evenly in thicker wall thicknesses. Secondly, when designing the mold, the cooling system of the mold should be enhanced, and an effective flow channel and exhaust system should be designed to avoid the problem of uneven cooling of thick-walled products. In addition, by increasing the injection pressure and speed of the injection molding machine, combined with a reasonable temperature control system, the injection molding efficiency can be effectively improved and the molding quality of thick-walled parts can be guaranteed.
Injection molding can handle a variety of plastic parts thicknesses, ranging from thin-walled to thick-walled products. Although thick-wall injection molding faces some technical challenges, these problems can be overcome through optimized material selection, precise mold design, and reasonable injection molding process control. As technology continues to develop, the application range of injection molding will become wider and wider, and manufacturers can produce high-quality plastic parts of various thicknesses to meet the needs of different industries.
Injection molding is an efficient production technology used to manufacture a variety of plastic parts, including transparent plastic parts. Transparent plastics are widely used in many industries, such as automotive, electronics, medical and packaging industries, due to their unique appearance and functionality. This article will discuss the feasibility of injection molding transparent plastics, the challenges faced and how to overcome these challenges.
Transparent plastics usually refer to those plastic materials that can transmit light. Common transparent plastics include polycarbonate (PC), polymethyl methacrylate (PMMA) and polystyrene (PS). Different types of transparent plastics have their own characteristics. For example, polycarbonate has high impact resistance and good thermal stability, while polymethyl methacrylate is known for its good transparency and surface smoothness.
Injection molding of transparent plastics is entirely feasible, especially when the selected plastic material has good fluidity and low shrinkage. Transparent plastics can be accurately injected into the mold under high temperature and high pressure, and the molded transparent plastic parts can achieve high transparency and clarity. Therefore, using injection molding of transparent plastics, not only can products with transparent appearance and no defects be produced, but also mass production can be carried out in a short time.
Although injection molding of transparent plastics is feasible, there are still a series of challenges in the production process. First, the fluidity and shrinkage of transparent plastics may cause defects on the surface of the molded parts, such as bubbles, scratches or uneven color differences. Secondly, the injection molding machine and mold require high precision. Not only must the injection temperature and pressure be controlled, but the surface finish of the mold must also be guaranteed. Any small defect may affect the transparency, resulting in the product failing to achieve the expected visual effect.
In order to overcome the challenges of injection molding transparent plastics, companies can take a series of technical measures. First, it is crucial to select the right raw materials to ensure that the fluidity and shrinkage of the materials meet the product requirements. Secondly, during the injection molding process, the temperature, pressure and injection speed need to be precisely controlled to ensure uniform plastic flow. In addition, the design and precision processing of the injection mold are also crucial, especially the smoothness of the mold surface and the design of the exhaust system, which can effectively avoid the generation of bubbles and defects.
Injection molding of transparent plastics is a technically feasible process that is widely used in various industries. Although there are some challenges in the production process, these problems can be overcome through reasonable material selection, precise temperature and pressure control, and precise mold design to produce high-quality transparent plastic products. With the advancement of technology, the application prospects of injection molding transparent plastics will be broader.